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Abstract—Multi-task learning technique is widely utilized in machine learning modeling where commonalities and differences across
multiple tasks are exploited. However, multiple conflicting objectives often occur in multi-task learning. Conventionally, a common
compromise is to minimize the weighted sum of multiple objectives which may be invalid if the objectives are competing. In this paper, a
novel multi-objective machine learning approach is proposed to solve this challenging issue, which reformulates the multi-task learning
as multi-objective optimization. To address the issues contributed by existing multi-objective optimization algorithms, a multi-gradient
descent algorithm is introduced for the multi-objective machine learning problem by which an innovative gradient-based optimization is
leveraged to converge to an optimal solution of the Pareto set. Moreover, the gradient surgery for the multi-gradient descent algorithm
is proposed to obtain a stable Pareto optimal solution. As most of the edge computing devices are computational resource-constrained,
the proposed method is implemented for optimizing the edge device’s memory, computation and communication demands. The
proposed method is applied to the multiple license plate recognition problem. The experimental results show that the proposed method
outperforms state-of-the-art learning methods and can successfully find solutions that balance multiple objectives of the learning task
over different datasets.

Index Terms—multi-task learning, multiple gradient descent, edge computing, multi-objective machine learning, deep neural network.

F

1 INTRODUCTION

L EARNING model is inherently a multi-objective task [1]. In
machine learning model, on the one hand, learning methods

usually perform model selection and parameter estimation based
on multiple criteria. On the other hand, it is generally to train a
model or multiple models to perform the required task. Machine
learning methods are usually divided into single-objective machine
learning and multi-objective machine learning [2]. Single-
objective machine learning is a learning paradigm that optimizes
only one objective function. The trained model between each
objective is independent, and useful information is also contained
only in training data for individual learning objective, so it cannot
obtain more useful information from the learning process of
other objectives. Hence, single-objective machine learning ignores
feature sharing, subspace sharing and parameter sharing. Multi-
objective machine learning is an inductive transfer method, which
uses the domain information contained in the training data as the
inductive bias to improve generalization. By learning objectives
in parallel with shared representation, what is learned for each
objective can help other objectives be learned better [3]. Many
multi-objective machine learning methods have been proposed in
recent years, and have achieved excellent performance in many
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fields such as computer vision [4], [5], multimedia learning [6],
natural language processing [7], anomaly detection [8], speech
recognition [9] and network calculus [10].

According to the relationship among multiple objectives,
multi-objective machine learning can be divided into two
categories: the traditional multi-objective learning and multi-
objective machine learning based on deep learning. Multi-
objective machine learning based on deep learning avoids the
problem of insufficient information utilization in traditional multi-
objective learning method, and it comprehensively considers
the relationship between features and model parameters. Multi-
objective machine learning based on deep learning is typically
conducted via hard or soft parameter sharing. In hard parameter
sharing, a subset of the parameters is shared among tasks while
other parameters are task-specific. In soft parameter sharing, each
task has its own model with its own parameters. The distance
between the parameters of the model is then regularized in
order to encourage the parameters to be similar. A new “cross-
stitch” sharing unit was proposed in [11], which combines the
activations from multiple networks and can be trained end-to-end.
It can learn an optimal combination of shared and task-specific
representations. An automatic approach for designing multi-task
deep learning architectures was proposed in [12]. The approach
started with a thin multi-layer network and dynamically widens it
in a greedy manner during training. It can create a tree-like deep
architecture by doing so iteratively. A deep convolutional network
of multi-objective machine learning was proposed based on tensor
normal priors, which can alleviate the dilemma of negative-
transfer in feature layers and under-transfer in the classifier layers
[13]. The parameters from all models were regularised by the
tensor trace norm in [14], and the sharing strategy was learned
in a data-driven way.
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Multiple conflicting objectives often appear in multi-objective
machine learning. It is impossible to find a solution to optimize all
tasks. A common compromise is to optimize a proxy objective that
minimizes a weighted linear combination of per-task losses. Linear
weighted summation is a priori method, which needs to determine
weights in advance. However, it is difficult to adjust the task
weight manually, which is costly and highly subjective. At present,
some methods are proposed to automatically adjust the weights
by taking the weights of tasks as the parameters in the process
of model training. A principled approach was proposed for multi-
objective machine learning which weighs multiple loss functions
by considering the homoscedastic uncertainty of each objective
[15]. A gradient normalization algorithm that automatically
balances training in multi-objective machine learning models by
dynamically tuning gradient magnitudes was proposed in [16].
However, it is difficult to find the optimal solution of the multi-
objective machine learning problem with these heuristic methods.

Multi-objective optimization addresses the problem of
optimizing a set of possibly conflicting objectives. Population-
based and gradient-free multi-objective evolutionary algorithms
(MOEAs) are popular methods to find a set of well-distributed
Pareto solutions in a single run. A collaborative multi-objective
learning method, in which the multi-objective learning problem
was expressed as a multi-objective optimization problem, and
the multi-objective particle swarm optimization algorithm was
adopted to solve the multi-objective learning problem in [17]. The
equivalence relationship between clustered multi-task learning
(CMTL) and alternating structure optimization was established
in [18]. The combination of meta-learning with a modified multi-
objective particle swarm optimization (MOPSO) which uses the
crowding distance mechanism (MOPSO-CDR) is proposed to
solve the multi-objective learning problems in [19]. A novel
support vector machine multi-task multiple kernel learning (MT-
MKL) framework was proposed in [20] that considered an
implicitly defined set of conic combinations of task objectives, and
the obtained solution corresponds to a single point on the Pareto
Front (PF) of a multi-objective optimization problem. However, it
can not be used for solving large scale and gradient-based multi-
task learning problems. Therefore, it is necessary to find a multi-
objective optimization method to solve these problems effectively
and quickly.

Considering that MOEAs need to consume a lot of computing
time in deep learning, and multi-objective gradient descent
is an efficient approach for multi-objective optimization when
gradient information is available; as a result, a multi-gradient
descent algorithm (MGDA) is introduced, which adopts an
innovative gradient-based optimization algorithm that is leveraged
to converge to an optimal solution of the Pareto set. It can use the
gradients of each task and solve an optimization problem to decide
on an update over the shared parameters. By using a combination
of gradients, a common descent direction for all objectives can be
found. MGDA was compared with MOEAs in cost efficiency and
was found to be suitable for multi-objective machine learning with
deep networks [21].

In recent years, a new trend in computing is happening with
the function of clouds being increasingly moving towards the
network edges. Edge computing places compute nodes close to
end devices, which can meet the high computation and low-latency
requirements of deep learning on edge devices, and also provides
better privacy, bandwidth efficiency, and scalability. For some
computation-intensive and latency-critical tasks in multi-objective

machine learning, devices are supposed to be deployed in a
distributed manner and it is necessary to offload multiple objective
tasks to multiple edge servers for optimizing the edge device’s
memory, computation and communication demands, which can
reduce response time, provide more efficient processing, and
alleviate the pressure on the network [22], [23], [24].

In this paper, a multiple gradient descent design for multi-
task learning, i.e., a multi-objective machine learning approach,
based on edge computing is proposed. The main contributions of
this paper are summarized as follows: (1) To solve the multiple
conflicting objectives problem in multi-task learning, the multi-
objective machine learning problem is reformulated as the multi-
objective optimization problem to solve the tradeoff problems
among different objectives. A multi-task learning method based
on multi-gradient descent algorithm is proposed for finding an
optimal solution of the Pareto set; (2) To avoid the problem that
traditional multi-gradient descent algorithm may converge to the
two endpoints of the Pareto front, a gradient surgery for the
multi-gradient descent algorithm is proposed to obtain a stable
Pareto optimal solution; (3) As most of the edge computing
devices are computational resource-constrained, the proposed
method is implemented for optimizing the edge device’s memory,
computation and communication demands; (4) The proposed
method is successfully applied to solve the multiple license plate
recognition problem.

2 PROPOSED MULTI-OBJECTIVE MACHINE
LEARNING METHOD FOR EDGE COMPUTING

2.1 Basic Definitions
Machine learning is inherently a multi-objective task, and
multi-objective machine learning can be formulated as multi-
objective optimization, which is optimizing a collection of
possibly conflicting objectives. A multi-objective machine
learning problem can be described by T correlated tasks with a
loss vector:

min
θsh,

θ1,..,θT

(
L1
(
θsh, θ1

)
, ..., LT

(
θsh, θT

))T
(1)

where Lt
(
θsh, θt

)
, t = 1, 2, · · · , T , is the loss of the t-th task,

θsh is the shared parameter, and θt is the task-specific parameter.
Problem (1) is a multi-objective optimization problem (MOP).
The resolution of a MOP yields a set of compromise solutions
representing the optimal trade-offs among the different objectives.

There are several concepts related to multi-objective
optimization in multi-objective machine learning.
Definition 1 (Pareto Dominance). Let θ and θ̄ be two
points, θ is said to dominate θ̄, denoted as θ ≺ θ̄, if and
only if Li

(
θsh, θi

)
≤ Li

(
θ̄sh, θ̄i

)
,∀i ∈ {1, 2, ..., T} and

Lj
(
θsh, θj

)
< Lj

(
θ̄sh, θ̄j

)
,∃j ∈ {1, 2, ..., T}.

Definition 2 (Pareto Optimality). A point θ∗ ∈ Ω is called Pareto
optimal point if it is not dominated by any other point. The set of
all Pareto optimal points is called the Pareto set.

2.2 Multi-gradient Descent Algorithm Based on
Gradient Surgery
The multi-gradient descent algorithm usually adopts the following
iterative formula to update the shared parameters θsh

θsh = θsh − η
∑T

t=1
αt∇θshLt

(
θsh, θt

)
(2)
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where αt is the weight for the t-th task, and η is the learning rate.

Let’s define the following constrained minimization problem:

min
α1,...,αT

∥∥∥∥ T∑
t=1

αt∇θshLt
(
θsh, θt

)∥∥∥∥2
2

s.t.
T∑
t=1

αt = 1, αt ≥ 0,∀t ∈ {1, · · · , T}. (3)

Next, the following theorem is given to show that the multi-
gradient descent algorithm can generate a Pareto point to the multi-
objective optimization problem (1).

Theorem 1. Supposing that αt(t = 1, · · · , T ) is the
solution to the constrained minimization problem (3) and
T∑
t=1

αt∇θshLt
(
θsh, θt

)
= 0, then (θsh, θ1, · · · , θT ) is a Pareto

optimal solution to problem (1).

Proof: Constructing the Lagrangian as follows

L =

∥∥∥∥∥
T∑
t=1

αt∇θshLt
(
θsh, θt

)∥∥∥∥∥
2

2

+ λ(
T∑
t=1

αt − 1) (4)

then the optimality conditions to the constrained problem (3) are

∂L
∂αt

= 0,∀t ∈ {1, · · · , T};

∂L
∂λ

= 0. (5)

By combing the Eq. (5) and
T∑
t=1

αt∇θshLt
(
θsh, θt

)
= 0, we

have

α1∇L1(θsh, θ1) + · · ·+ αT∇LT (θsh, θT ) = 0 (6)
T∑
t=1

αt = 1, αt ≥ 0,∀t

which is equivalent to the optimal conditions of the multi-objective
machine learning problem (1). This completes the proof.

To calculate α effeciently, let’s consider the case of two tasks
(T = 2), and then the optimization problem can be defined as
follows

min
α∈[0,1]

‖αu+ (1− α) v‖22 . (7)

Note that

f(α) = ‖αu+ (1− α)v‖22
= (αu+ (1− α)v, αu+ (1− α)v).

By taking the derivative with respect to Eq. (7), it gives

f ′(α) = 2 (u− v, α(u− v) + v) . (8)

When u 6= v, we have

(αu+ (1− α)v) · (u− v) = 0. (9)

Thus,

α =
v · (v − u)

‖u− v‖2
=

‖v‖2 − v · u
‖u‖2 − 2u · v + ‖v‖2

. (10)

When 0 < α < 1, such that

0 < α < 1⇔ 0 < ‖v‖2 − v · u < ‖u‖2 − 2u · v + ‖v‖2,
⇔ u · v < min (‖u‖ , ‖v‖)2,

⇔ cos (̂u, v) <
min(‖u‖ , ‖v‖)
max(‖u‖ , ‖v‖)

,

⇔ (̂u, v) > cos−1
min(‖u‖ , ‖v‖)
max(‖u‖ , ‖v‖)

. (11)

It can be seen from the above analysis that the angle between u
and v is at least equal to a certain limit angle, and the value range
should be

[
0, π2

]
. Therefore, the sufficient condition is that the

angle between u and v is an obtuse angle (u · v < 0). Whenever
the norms of u and v are very different, the limit angle will be
close to π/2. Conversely, if the norms of the gradient vectors u
and v are close to each other, the limit angle is small.

Thus, α can be solved as:

α =


0 , if uTv ≥ vTv,
v·(v−u)
‖u−v‖2 , if uTv < uTu and uTv < uTu,

1 , if uTv ≥ uTu.
(12)

When the numbers of tasks T > 2, the Frank-Wolfe convex
optimization method [25] is adopted to solve the problem (3)
quickly and effectively, and Eq. (12) is used as a subroutine
for the line search. However, when α = 0 or 1, MDGA will
converge to the two endpoints of the Pareto front, which is easy
to make the learning performance of one task better, while the
learning performance of another task is relatively poor. Therefore,
it is difficult for MDGA to stably converge to a point close to
the middle position on the Pareto front of the above optimization
problem.

In this study, the gradient surgery for the multi-gradient
descent algorithm is proposed to obtain a stable Pareto optimal
solution. The goal of gradient surgery is to modify the gradients
for each task so as to aviod that MDGA may converge to
the two endpoints of the Pareto front. The gradient information
of multiple tasks is considered comprehensively to avoid some
tasks dominating the whole gradient descent process. Suppose the
gradient of the shared parameters for one task is u, the gradient of
the shared parameters for the other task is v. When uTv ≥ vTv
or uTv ≥ uTu, the gradient of each task is projected onto the
normal plane of the gradient of the other task. When uTv < vTv
and uTv < uTu, the gradient of each task remains unaltered. A
pictorial description of gradient projection is shown in Fig. 1. And
its procedures are given as below.

Fig. 1: The diagram of gradient projection.

First, it determines whether to perform gradient surgery by
comparing uTv with vTv, and comparing uTv with uTu.

Second, if uTv ≥ vTv, then v is projected onto the normal
vector of u, thus, v = v + v·u

‖u‖2u. If uTv ≥ uTu, then u is
projected onto the normal vector of v, and u = u + u·v

‖v‖2 v. If
uTv < vTv and uTv < uTu, then u and v remain unaltered.

Third, to repeat this process across all of the other objectives
sampled in random order from the current batch and perform
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the same procedure for all objectives in the batch to obtain their
respective gradients.

2.3 Proposed Multi-task Learning Method with Multiple
Gradient Descent Based on Edge Computing

According to the above analysis, the pseudo-code of the proposed
method is shown in Algorithm 1. Edge computing enables a
hierarchical architecture of end devices, edge compute nodes,
and cloud data centers. In multi-objective machine learning,
edge computing can provide computing resources and scale with
the number of tasks, avoiding network bottlenecks at a central
location. In this study, we consider a edge computing network
composed by one cloud server, T edge servers and T mobile
devices, as shown in Fig. 2. Without loss of generality, we assume
that edge servers communicate with each other, and shared tasks
are computed and processed by these edge devices. At the same
time, each edge server has one specific task where each task can
be computed by the mobile device itself or be offloaded to and
processed by the edge servers or the cloud server.

This paper takes multi-license plate recognition as an example
to elaborate on the proposed method. In the surveillance area with
a large field of vision, multiple license plate recognition tasks
often occur simultaneously. Multiple license plate recognition is
more efficient and practical than single license plate recognition.
A camera can monitor multiple lanes, and the captured images
contain more vehicles, which can detect violations of traffic lights,
vehicle line pressure, and other violations in real time. Therefore,
multiple license plate recognition technology can effectively
save manpower and money, reduce the use and maintenance
of monitoring equipment, and provide efficient and practical
management methods for intelligent transportation.

In deep neural networks, the commonly used multi-task
learning method is usually to share hidden layer parameters. This
study adopts a hard sharing mechanism of parameters, uses multi-
objective machine learning strategies to mine valuable shared
information among multiple license plate recognition tasks, and
establishes the end-to-end license plate recognition model based
on multi-objective machine learning. The structure of the model
and the basic block are shown in Table 1 and Table 2, respetively.
In the end-to-end license plate recognition model based on multi-
objective machine learning, except for the last layer, the remaining
intermediate layers (Layers 1-11) are all regarded as shared layers,
which are used to extract common features. The last layer (Layer
12) is regarded as the task-specific layer, and which is set for each
license plate recognition task to extract task-specific features. The
end-to-end license plate recognition model architecture based on
multi-objective machine learning is shown in Fig. 3.

Supposing that the blank placeholder is ε, by inserting ε at
the first position of the license plate label sequence and after each
character, the license plate label character library is defined as L,
and after adding the blank placeholder, it is L′ = L ∪ {ε}. In
the license plate recognition, there is a timing problem that the
length of the model output sequence is greater than the length of
the label, because there are no real corresponding labels at some
moments, or the output labels are blank placeholders.

Supposing that the arbitrary output sequence path of the model
is π = {π1, π2, ..., πn}, the label sequence corresponding to the
license plate recognition task is l = {l1, l2, ..., lm} (m < n),
Assuming that the output probability of each moment is
independent of other moments. Given that the input sequence is

Algorithm 1 The pseudo-code of the proposed method

Input: η: learning rate;
Maxgen: Maximum Iterations;
B = {Tt}: task minibatch

Output: θsh: shared parameters;
θt: task-specific parameters

1: for t = 1 to T do
2: θt = θt − η∇θtLt

(
θsh, θt

)
3: end for
4: α =

(
α1, . . . , αT

)
=
(
1
T , . . . ,

1
T

)
5: gt ← ∇θshLt(θsh, θt) ∀t
6: gPCt ← gt ∀t
7: for Ti ∈ B do
8: for Tj

uniformly∼ B, Ti in random order do
9: if gTi gj ≥ gTi gi then

10: gPCj = gPCj +
gPCj ·gi
‖gi‖2

gi
11: end if
12: if gTi gj ≥ gTj gj then
13: gPCi = gPCi +

gPCi ·gj
‖gj‖2

gj
14: end if
15: end for
16: end for
17: gi =

∑
i g
PC
i , gj =

∑
j g

PC
j

18: Compute Mij = gTi gj
19: iter = 0
20: while iter < Maxgen do
21: t̂ = arg min

γ

∑
t α

tMγt

22: γ̂ = arg min
γ

((1− γ)α+ γMt̂)
>M((1− γ)α+ γMt̂)

23: α = (1− γ̂)α+ γ̂Mt̂

24: iter = iter +1
25: end while
26: θsh = θsh − η

∑T
t=1 α

t∇θshLt
(
θsh, θt

)
TABLE 1: The structure of end-to-end license plate recognition
model based on multi-objective machine learning

Layer Stage Channels Filter size Stride

1 Conv 64 3× 3 1× 1
2 Pool 64 3× 3 1× 1
3 Basic Block 128 3× 3 1× 1
4 Pool 64 3× 3 2× 1
5 Basic Block 128 3× 3 1× 1
6 Basic Block 128 3× 3 1× 1
7 Pool 64 3× 3 2× 1
8 Dropout - - -
9 Conv 256 4× 1 1× 1
10 Dropout - - -
11 Conv 68 1× 13 1× 1
12 Conv 68 1× 1 1× 1

x and the output sequence is π, the probability is expressed as
follows:

P (π|x) =
T∏
t=1

ytπt (13)
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Fig. 2: The system model of multi-objective machine learning based on edge computing network.
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Output

Fig. 3: An end-to-end license plate recognition model architecture based on multi-objective machine learning.

TABLE 2: Basic Block

Layer Stage Channels Filter size Stride

1 Conv 32 1× 1 1× 1
2 Conv 32 3× 1 1× 1
3 Conv 32 1× 3 1× 1
4 Conv 128 1× 1 1× 1

where ytπt represents the probability of outputting πt at time t,
and Eq. (13) represents the multiplication of the probabilities of
all characters in a path.

Let’s define a many-to-one mapping function ϕ : L′T → LT ,
which means that a given input sequence x can be mapped to a
collection of all possible output sequences on the label space L.
The specific operations are given as follows: 1) De-duplicating
consecutive identical license plate characters; 2) Removing blank
placeholders. Although all paths are different, different paths can
finally be mapped to the same label sequence l.

The conditional distribution probability of the label sequence

l under the input sequence x is equal to the sum of the conditional
probabilities of all paths that satisfy the mapping relationship,
which can be expressed as follows:

P (l|x) =
∑

π∈ϕ−1(l)

P (π|x) =
∑

π∈ϕ−1(l)

T∏
t=1

ytπt (14)

Eq. (14) represents the sum of all possible path probabilities.
Minimizing the negative log likelihood is the goal of optimization
during the training process of the end-to-end license plate
recognition model based on multi-objective machine learning,
which is given as below

Lt
(
θsh, θt

)
=

∑
l,y∈θ

− ln (P (l|x))

= −
∑
l,y∈θ

ln
∑

π∈ϕ−1(l)

T∏
t=1

ytπt (15)

The timing strategy gives a probability mapping from time-
series input to the output sequence. The conditional probability
distribution of the sequence of labels given model output is
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equal to the sum of conditional probability distribution satisfying
the relationship path. Adopting this alignment style can make
different paths mapped to the same label, and eventually obtain the
maximum value of the sum of probabilities. This is no necessity
for license plate character segmentation, and the output sequence
and the sequence of labels can be automatically aligned, so that
the timing problems can be well addressed.

In the decoding process, for a given input, the vehicle license
plate character recognition results are obtained by decoding the
model output according to the most probable path, which are given
as follows

l∗ = arg max
l

P (l|x) . (16)

Therefore, taking multi-license plate recognition problem as
an example, the detailed procedures of the proposed method are
summarized as follows:

Step 1: For all tasks, the loss functions are calculated for all
tasks Lt

(
θsh, θt

)
. The gradient of the shared parameters θsh is

denoted as ∇θshLt
(
θsh, θt

)
. The gradient of the task-specific

parameters θt is denoted as ∇θtLt
(
θsh, θt

)
.

Step 2: Gradient descent is implemented on the task-specific
parameters θt = θt − η∇θtLt

(
θsh, θt

)
.

Step 3: Weight Initialization for all tasks. The gradient of the
shared parameters θsh for the i-th and j-th task are denoted as gi
and gj , respectively.

Step 4: By comparing gTi gj with gTi gi, and comparing gTi gj
with gTj gj to determine whether to perform gradient surgery.

Step 5: gi and gj is computed by gradient surgery. The
gradient matrix for the shared parameters Mij consisted of gTi gj
is computed.

Step 6: The optimal index t̂ corresponding to the gradient
matrix is computed.

Step 7: Eq. (12) is adopted as a subroutine for the line search
to solve the constrained optimization problem (3).

Step 8: The solution (
∑T
t=1 α

t∇θshLt(θsh, θt)) obtained by
Step 7 as a gradient update applied to shared parameters.

Step 9: If the maximum number of iterations is reached, return
to Step 1.

Step 10: For the given input data x, the output of the model is
decoded according to Eq. (16) to obtain the recognition result of
license plate characters.

3 EXPERIMENTS AND DISCUSSION
In this section, several experiments are conducted to verify
the effectiveness of the proposed method. All the comparative
experiments are conducted in Python 3.7 on NVIDIA Corporation
GP102 [TITAN Xp].

3.1 Dataset
The large-scale Chinese City Parking Dataset (CCPD) included
seven subdatasets, which consists of approximately 280,000
different license plate samples [26]. In order to solve the problem
of multiple license plate recognition, a Multi-task convolutional
neural network (MTCNN) [27] is adopted to detect and extract
multiple license plate regions. Convolution operation of the
Proposal Net (PNet) in MTCNN is adopted to replace the sliding
window operation. It has the advantages of small size and fast
speed to determine all candidate areas that may be license

plates. Then, Output Net (ONet) is used to further refine and
determine the areas of the license plates. Multiple license plates
are automatically spliced together in a random manner in the left
and right directions to form a multiple license plate training set.
The multi-license plate dataset contains normal license plates,
uneven lighting, shooting distances quite far or close, tilted
license plates, extreme weather, and other challenging license plate
images. Therefore, the recognition of multiple license plates in
complex environments is considered in the experiments.

Table 3 lists the relevant descriptions of CCPD and the sizes
of training sets and test sets. The size of each multi-license plate
sample is 94 × 24. When considering a small-scale two-plate
recognition problem, the recognition task of the left license plate
is regarded as one task (task-L), and the recognition task of the
right license plate is regarded as another task (task-R). When
considering the problem of three license plate recognition, the
recognition of the intermediate license plate is regarded as a task
(task-M) on the basis of task-L and task-R.

Since CCPD contains various license plate samples with
different angles, different distances, and different lighting. In
this paper, spatial transformer networks (STN) [28] is adopted
to preprocess the license plate samples before training. The
structure of STN is shown in Table 4. STN can automatically
learn transformation parameters, reduce the influence of the tilt
and deformation of the license plate images, and enhance the
robustness of license plate recognition.

In order to ensure fairness of the experiment, the settings of the
main parameters in the experiment are the same as shown in Table
5. The above five main parameters used in this paper are general
parameters for improving model training. The same model is used
in the comparative experiments, and different comparison methods
are used to adjust the weights of loss functions. In the process of
adjusting the weight, there is no need to give fixed parameters such
as the above five parameters in advance. Therefore, this parameter
setting is fair to all comparison algorithms.

During the experiment, the learning rate is gradually decayed.
In the early stage of model training, a larger learning rate is used
to accelerate learning. As the number of iterations increases, the
learning rate is gradually reduced to ensure that the model does
not fluctuate too much in the later stages of training. This makes
it easier to find the local or global optimal solution. The sizes of
training sets and test sets are listed in Table 3.

The detailed process of applying the proposed method to
the multi-license plate recognition experiment based on edge
computing is as follows: First, in order to be able to use the deep
learning model proposed in this paper on Android, we converted
it to TorchScript format. Then, we add PyTorch Mobile to Gradle
dependencies. Last, PyTorch Mobile is used to load models on
mobile phones for license plate recognition.

TABLE 4: Parameters of STN

Layer Stage Channels Filter size Stride

1 Conv 32 3× 3 1× 1
2 Pool 32 2× 2 2× 2
3 Conv 32 5× 5 1× 1
4 Conv 32 3× 3 3× 3
5 FC 32 − −
6 FC 6 − −
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TABLE 3: Information about sub-datasets in CCPD

Dataset Description Train set Test set

CCPD-Base Normal license plate image 149,999 49,999
CCPD-DB The license plate image is unevenly lit, dark or bright 15,001 5,000
CCPD-FN The distance from the license plate to the shooting location is relatively far or near 15000 4999
CCPD-Rotate Horizontal tilt degree 20◦ ∼ 50◦ and the vertical tilt degree varies from −10◦ ∼ 10◦ 7,499 2,499
CCPD-Tilt Horizontal tilt degree 15◦ ∼ 45◦ and the vertical tilt degree varies from 15◦ ∼ 45◦ 7,500 2,500
CCPD-Weather License plate images taken on rainy, snowy or foggy days 7,500 2,499
CCPD-Challenge Other more challenging license plate images 7,503 2,503

TABLE 5: Parameters setting

Parameter value

Batch size 128
Dropout rate 0.5
Weight decay 2e-5
Epoch 40
Learning rate 1e-2,1e-3,1e-4

3.2 Verification Experiments
In this section, the proposed method is compared with the single-
objective machine learning method. The single-objective machine
learning method is adopted to solve the license plate recognition
task independently, which is represented in the statistical results
as “Single task”. The proposed method is tested on multi-license
plates datasets, and the single-objective machine method is tested
on the single-license plates datasets.

Table 6 shows the performance comparison results on multi-
license plate datasets containing two license plates. Accuracy-L
and accuracy-R represent the license plate recognition accuracy
of task-L and task-R, respectively. Compared with the single-
task baseline, the proposed method can achieve higher recognition
accuracy. The highest license plate recognition accuracy achieves
up to 99.83% average precision on CCPD-Tilt, and the accuracy-
L and accuracy-R of the proposed method are 3.26% and 2.73%
higher than the single-task baseline, respectively.

As can be observed from Table 7, the performance comparison
results on multi-license plate datasets containing three license
plates show the license plate recognition accuracy of the proposed
method are better than the single-task baseline on CCPD. To sum
up, the proposed method can effectively solve the problem of
multiple license plate recognition, and it outperforms baselines
for all license plates recognition tasks and achieves comparable
performance, indicating that the tasks cooperate with and help
each other.

3.3 Comparative Experiments
In this section, the proposed method is compared with three
representative multi-objective machine learning methods: 1)
Uniform scaling: minimize the weighted sum of loss functions
1
T

∑T
t=1 L

t; 2) Kendall’s method: using the uncertainty weighting
[15]. 3) GradNorm: using the normalization [16].

The scatter plot of license plate recognition accuracy of the
proposed method and comparison method on CCPD-Base is
visualized in Fig. 4. The two solid yellow lines represent the
accuracy-L and accuracy-R of the single-task baseline. The red
shaded area represents that the license plate recognition accuracy
of the proposed method outperforms the single-task baseline. It

can be seen from Fig. 4 that the performance of the proposed
method is better than other comparison methods on CCPD, which
is located in the red shaded area. Kendall’s method and GradNorm
find solutions that are distinctly better than uniform scaling. The
same visualization method is used for the other six subdatasets, as
shown in Fig. 5.
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Fig. 4: Accuracy of different methods on CCPD-Base.

As shown in Table 8 and Fig.5, it can be found that the license
plate recognition accuracy of the proposed method is better than
other multi-objective machine learning methods on two license
plate recognition tasks. The accuracy-L of Kendall’s method is the
same as the proposed method are both 97.63% on CCPD-Weather.
The accuracy-R of the proposed method is better than Kendall’s
method. Although the accuracy-L of Kendall’s method and
GradNorm are slightly better than the proposed method on CCPD-
Challenge. For accuracy-R, the proposed method outperforms
Kendall’s method and GradNorm. Moreover, for the license
plate sample with large tilt and deformation (CCPD-Rotate), the
accuracy-L of the method proposed in this paper is 4.14%, 4.22%
and 4.54% higher than other three methods, respectively. The
accuracy-R of the proposed method is 5.15%, 4.10% and 2.09%
higher than other three methods.

Compared with the recognition task of two license plates, the
recognition task of three license plates is more complicated and
more difficult. It can be seen from Table 8 that the comparison
algorithm has different degrees of decline in the accuracy of
license plate recognition. The highest license plate recognition
accuracy of the proposed method can reach 99.35% on CCPD-
Base, and accuracy-R is 13.81%, 10.56% and 8.63% higher than
other three comparison algorithms on CCPD-Rotate, respectively.
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Fig. 5: Accuracy of different methods on CCPD.
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Fig. 6: Convergence curves of training loss function with different methods on CCPD-Base.
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Fig. 7: Convergence curves of training loss function with different methods on CCPD-DB.
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Fig. 8: Convergence curves of training loss function with different methods on CCPD-FN.
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Fig. 9: Convergence curves of training loss function with different methods on CCPD-Rotate.
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Fig. 10: Convergence curves of training loss function with different methods on CCPD-Tilt.
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Fig. 11: Convergence curves of training loss function with different methods on CCPD-Weather.
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TABLE 6: The performance of different methods on datasets with two license plates

Method Evaluation index
Dataset

CCPD-Base CCPD-DB CCPD-FN CCPD-Rotate CCPD-Tilt CCPD-Weather CCPD-Challenge

Single task
Accuracy-L(%) 97.14 96.68 96.10 96.25 96.57 96.29 84.11
Accuracy-R(%) 95.49 96.56 96.64 94.16 92.74 97.19 86.98

Proposed method
Accuracy-L(%) 97.54 97.16 98.36 98.73 99.83 97.63 84.45
Accuracy-R(%) 96.35 98.44 98.85 94.32 95.47 98.55 88.89

TABLE 7: The performance of different methods on datasets with three license plates

Method Evaluation index
Dataset

CCPD-Base CCPD-DB CCPD-FN CCPD-Rotate CCPD-Tilt CCPD-Weather CCPD-Challenge

Single task
Accuracy-L(%) 94.14 95.36 94.38 93.15 91.23 95.19 81.19
Accuracy-M(%) 96.78 94.87 96.73 96.19 90.75 94.92 84.66
Accuracy-R(%) 95.37 96.58 95.84 92.47 93.64 97.28 87.46

Proposed method
Accuracy-L(%) 97.31 98.57 97.31 96.71 97.95 97.99 84.33
Accuracy-M(%) 97.02 96.88 98.88 96.41 96.58 96.57 85.69
Accuracy-R(%) 99.35 97.88 96.58 96.78 95.41 97.65 88.99

TABLE 8: Accuracy of different methods on datasets with two license plates

Method Evaluation index
Dataset

CCPD-Base CCPD-DB CCPD-FN CCPD-Rotate CCPD-Tilt CCPD-Weather CCPD-Challenge

uniform scaling
Accuracy L(%) 96.04 94.96 97.24 94.59 97.09 97.23 80.24
Accuracy R(%) 94.56 92.76 94.76 89.17 89.62 97.31 79.21

Kendall’s method
Accuracy L(%) 97.20 96.77 97.52 94.51 96.85 97.63 84.19
Accuracy R(%) 94.53 94.95 95.41 90.22 92.17 97.39 85.39

GradNorm
Accuracy L(%) 97.15 96.85 98.09 94.19 97.26 97.47 84.84
Accuracy R(%) 95.53 94.18 94.87 92.23 91.12 97.99 81.05

Proposed method
Accuracy-L(%) 97.54 97.16 98.36 98.73 99.83 97.63 84.45
Accuracy-R(%) 96.35 98.44 98.85 94.32 95.47 98.55 88.89

TABLE 9: Accuracy of different methods on datasets with three license plates

Method Evaluation index
Dataset

CCPD-Base CCPD-DB CCPD-FN CCPD-Rotate CCPD-Tilt CCPD-Weather CCPD-Challenge

uniform scaling
Accuracy L(%) 93.14 90.57 90.24 94.59 91.34 91.43 80.13
Accuracy M(%) 92.86 87.34 95.14 91.35 96.37 94.23 75.19
Accuracy R(%) 92.11 93.56 88.35 82.97 84.62 92.46 74.84

Kendall’s method
Accuracy L(%) 96.23 96.32 94.34 93.37 91.46 93.25 82.24
Accuracy M(%) 94.37 93.12 97.72 93.59 96.41 94.61 78.15
Accuracy R(%) 95.84 97.88 90.42 86.22 87.43 93.89 82.56

GradNorm
Accuracy L(%) 97.01 95.35 94.14 92.57 94.24 91.49 76.67
Accuracy M(%) 94.24 94.19 94.85 95.17 94.73 94.14 84.33
Accuracy R(%) 96.47 90.91 96.10 88.15 94.26 94.27 84.22

Proposed method
Accuracy-L(%) 97.31 98.57 97.31 96.71 97.95 97.99 84.33
Accuracy-M(%) 97.02 96.88 98.88 96.41 96.58 96.57 85.69
Accuracy-R(%) 99.35 97.88 96.58 96.78 95.41 97.65 88.99
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Fig. 12: Convergence curves of training loss function with different methods on CCPD-Challenge.

The accuracy-R of Kendall’s method is the same as the proposed
method are both 97.88% on CCPD-DB. The proposed method
outperforms other comparison algorithms for the majority of

tasks. The experiment results also show that the proposed method
remains effective when the number of tasks is high.

Figs. 6-12 show the downward trend of loss on seven
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subdatasets during the training process, respectively, where loss-L,
loss-M and loss-R represent the loss functions of the left, middle
and right license plate recognition tasks. As the number of epochs
increases, the loss function of all comparison algorithms finally
decline rapidly and converge gradually. The loss decreases to
a point of stability after the 13th epoch and fluctuates slowly.
For license plate samples in different complex environments, the
loss rates of different methods are different. Although on CCPD-
Challenge, the loss of all methods in the training process decreases
slowly. However, the proposed method has a faster decline on
loss-L, loss-M and loss-R, and the final loss value is the smallest.
Only on CCPD-DB, the loss-R obtained by the Kendall’s method
is smaller than that obtained by the proposed method. Compared
with other algorithms, the loss of the proposed method decreases
faster and the loss value is smaller.

Compared with the other state-of-the-art learning methods, it
can be found that the proposed method can effectively improve
the accuracy of license plate recognition. For various tilted and
deformed license plate datasets with different viewing angles,
different distances, and different lighting. The proposed method is
superior to other multi-objective machine learning methods, and
has good robustness and generalization performance.

4 CONCLUSION

In this paper, a novel multi-objective machine learning method
was proposed. First, considering that the traditional weighted
sum method is invalid when the objectives are competing.
In view of the issues contributed by existing multi-objective
optimization algorithms, a multi-gradient descent algorithm was
introduced where an innovative gradient-based optimization was
leveraged to converge to an optimal solution of the Pareto set.
Second, in order to avoid converging to the two endpoints of
the Pareto front, the gradient surgery for the multi-gradient
descent algorithm was proposed to obtain a stable Pareto
optimal solution. Third, as the most of edge computing devices
are computational resource-constrained, the proposed method
was implemented for optimizing the edge device’s memory,
computation and communication demands. Last, the proposed
method was successfully applied to solve the multiple license plate
recognition problem. The experimental results showed that the
proposed method outperforms state-of-the-art learning methods
and can successfully find solutions that balance multiple objectives
of the learning task over different datasets.
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